1–10 CBACDBBDCA
11–20 ACCBDADBDC
21–30 BCADDABDAC
31–40 DACBBDACCD
41–50 ACCBDABBCD
- ===========================
- (1a)
- [2(1/2)+1(3/4)/1(2/5)]/[2(1/4)-1(1/2)]
- [5/2+7/4/7/5]/[9/4-3/2]
- =[5/2+7/4*5/7]/[9/4-3/2]
- [5/2+5/4]/[9/4-3/2]
- =[(10+5/4)/(9-6/4)]
- =(15/4)/(3/4)
- =15/4*4/3
- =5
- (1b)
- From tan60/1*PR/3root2
- PR=3root2*1/root3
- =3root2/root3*root3/root3
- =3root6/3=root6
- From sin45/1*root6/x
- x=root6*root2
- =root12
- =root4*3
- =2root3
- ===========================
- 2a)
-
A=p(1+r/100)^n
-
A=2205000
-
n=2
-
r=5%
-
p=?
-
2205000=p(1+5/100)^2
-
2205000=p(1.05)^2
-
p=2205000/(1.05)^2
-
p=N2,000,000
-
(2b)
-
Area=30cm^2,
-
h/b=3/2
-
Area=1/2bh
-
b=2h/3
-
30=1/3*2h/3*h
-
2h^2=30*2*3
-
h^2=30*2*3/2
-
h^2=9
-
h=√9
-
h=9.49m
-
A=p(1+r/100)^n
A=2205000
n=2
r=5%
p=?
2205000=p(1+5/100)^2
2205000=p(1.05)^2
p=2205000/(1.05)^2
p=N2,000,000
(2b)
Area=30cm^2,
h/b=3/2
Area=1/2bh
b=2h/3
30=1/3*2h/3*h
2h^2=30*2*3
h^2=30*2*3/2
h^2=9
h=√9
h=9.49m
===========================
- 3)
- 2x/1-2/5y=2y/1(isosceles angle)
- LCM = 5
- 10x-2y=10y
- 10x=10y+2y
- x=12y/10
- x=6y/5……(1)
- 2x-2/55y+2whole1/4c+1/2+2y=180(sum of angle in a triangle)
- 2x/1-2y/5+(9/4)x+y/2+2y=180
- LCM = 20
- 40x-8y+45x+10y+40y=3600
- 40x+45x-8y+50y=3600
- 95x+42y=3600….(2)
- Substitute for x in eq…2
- 95(6y/5)+42y=3600
- 19(6y)+42y=3600
- 114y+42y=3600
- 156y/156=3600/156
- y=23.08
- Subst for y in equ…1
- x=6(23.08)/5
- x=27.69
- ===========================
- 5b)
- Median = ((N + 1) / 2)th item
- Where:
- N = 31
- 40, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 43, 43, 44, 44, 44, 44, 45, 45, 46, 46, 46, 46, 46, 46
- Data table
- F 7 4 6 2 4 2 6
- X 40 41 42 43 44 45 46
- Median = ((31 + 1) / 2)th item
- Median = (32 / 2)th item
- Median = 16th item
- Arranging the discrete data in ascending order, We go get:
- 40, 40, 40, 40, 40, 40, 40, 41, 41, 41, 41, 42, 42, 42, 42, 42, 42, 43, 43, 44, 44, 44, 44, 45, 45, 46, 46, 46, 46, 46, 46
- Median = 42
- ==========================
- 7a)
-
Log6y+2log6x= 3
-
Log6y+log6x²= 3
-
Log6(x²y)= 3
-
X²y = 6³
-
X²y = 216
-
Y= 216/x²
-
(7b)
-
(I). Percentage who liked football and volleyball but not boxing = 20
-
(II)
-
Percentage who liked exactly two sports = 40 + 20 + 10 = 70
-
(III). Summing
-
5+5+10+40+20+10+5+x = 100%
-
X + 95 = 100
-
X = 100– 95 = 5%
-
Percentage who like none= 5%
- -----------------------------------------
- 9a) Diagram
- (9b)
- a= 360-330{ =030 degree
- b=a=030degree{alternate angles}
- Φ = 090degree+030degre
- = 120degree
- (i) find distance AC wing.
- |AC|²= |BC|²+|AB|²–2|AB||BC|Costita
- |AC|²= 300²+100²–2(300)(100)Cos120degree
- = 90000+10000–60000×(-0.5)
- =100,000+30,000
- = 130,000
- |AC| = √130,000 = 360.555KM
- =360.56Km(2d.p)
- (ii)
- find β, applying the first rule
- 300/Sinβ = 360.56/Sin120
- Sinβ = 300sin120/360.56 = 259.81/360.56
- = 0.7206
- β = sin inverse(0.7206)
- = 46degree
- Therefore the bearing of the plane from A
- =330–046
- =284degrees.
- 11)
- A={4,5,6,7,8,9,10,11,12}
- B={10,11,12,13,14,15,16,17,18,19,20,21,22,23,24}
- M={4,8,12,11,6,20,24,28}
- a)prob (A)=3/7
- b)prob( B)=7-4/7=3/7
- c)prob(AuB)=n(AuB)/n(m)
- but (AuB)={4,8,12,11,6,20,24,}
- prob(AuB)=6/7
- =============================
- Keep refreshing answers loading......
- Objectives loading
- Keep refreshing this page every 5 minutes
- Kindly share with your friends
- GOODLUCK!!
Log6y+2log6x= 3
Log6y+log6x²= 3
Log6(x²y)= 3
X²y = 6³
X²y = 216
Y= 216/x²
(7b)
(I). Percentage who liked football and volleyball but not boxing = 20
(II)
Percentage who liked exactly two sports = 40 + 20 + 10 = 70
(III). Summing
5+5+10+40+20+10+5+x = 100%
X + 95 = 100
X = 100– 95 = 5%
Percentage who like none= 5%
No comments:
Post a Comment